Applied Prevalence Ratio estimation with different Regression models: An example from a cross-national study on substance use research

Authors

  • Albert Espelt Agència de Salut Pública de Barcelona. Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona. CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III. Institut d’Investigació Biomèdica de Sant Pau.
  • Marc Marí-Dell'Olmo CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III. Agència de Salut Pública de Barcelona. Institut d’Investigació Biomèdica de Sant Pau.
  • Eva Penelo Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona.
  • Marina Bosque-Prous Agència de Salut Pública de Barcelona. Institut d’Investigació Biomèdica de Sant Pau.

DOI:

https://doi.org/10.20882/adicciones.823

Keywords:

Poisson regression, Log-binomial regression, Prevalence Ratio, Odds Ratio, Cross-sectional studies.

Abstract

Objective: To examine the differences between Prevalence Ratio (PR) and Odds Ratio (OR) in a cross-sectional study and to provide tools to calculate PR using two statistical packages widely used in substance use research (STATA and R). Methods: We used cross-sectional data from 41,263 participants of 16 European countries participating in the Survey on Health, Ageing and Retirement in Europe (SHARE). The dependent variable, hazardous drinking, was calculated using the Alcohol Use Disorders Identification Test – Consumption (AUDIT-C). The main independent variable was gender. Other variables used were: age, educational level and country of residence. PR of hazardous drinking in men with relation to women was estimated using Mantel-Haenszel method, log-binomial regression models and poisson regression models with robust variance. These estimations were compared to the OR calculated using logistic regression models. Results: Prevalence of hazardous drinkers varied among countries. Generally, men have higher prevalence of hazardous drinking than women [PR=1.43 (1.38-1.47)]. Estimated PR was identical independently of the method and the statistical package used. However, OR overestimated PR, depending on the prevalence of hazardous drinking in the country. Conclusions: In cross-sectional studies, where comparisons between countries with differences in the prevalence of the disease or condition are made, it is advisable to use PR instead of OR. 

References

Barlés-Arizón, J.J., Escario, J.J., y Sánchez-Ventura, J. G. (2014) Predictors of driving under the influence of alcohol among Spanish adolescents. Adicciones, 26, 96-105.

Barros, A. J. D., y Hirakata, V. N. (2003). Alternatives for logistic regression in cross-sectional studies: an empirical comparison of models that directly estimate the prevalence ratio. BMC Medical Research Methodology, 3, 21. doi:10.1186/1471-2288-3-21.

Börsch-Supan, A., Brandt, M., Hunkler, C., Kneip, T., Korbmacher, J., Malter, F.,... Zuber., S. (2013). Data Resource Profile: The Survey of Health, Ageing and Retirement in Europe (SHARE). International Journal of Epidemiology, 42, 992–1001. doi: 10.1093/ije/dyt088

Bosque-Prous, M., Espelt, A., Guitart, A. M., Bartroli, M., Villalbí, J. R., y Brugal, M. T. (2014). Association between stricter alcohol advertising regulations and lower hazardous drinking across European countries. Addiction, 109, 1634–1643. doi:10.1111/add.12562.

Brotman, D. J. (2006). Mediators of the association between mortality risk and socioeconomic status. JAMA: The Journal of the American Medical Association, 296, 763–764; author reply 764. doi: 10.1001/jama.296.7.763-b.

Coutinho, L. M. S., Scazufca, M., y Menezes, P. R. (2008). Methods for estimating prevalence ratios in cross-sectional studies. Revista de Saúde Pública, 42, 992–998.

Cummings, P. (2009). Methods for estimating adjusted risk ratios. Stata Journal, 9, 175–196.

Deddens, J. A., y Petersen, M. R. (2008). Approaches for estimating prevalence ratios. Occupational and Environmental Medicine, 65, 501–506. doi: 10.1136/oem.2007.034777.

Espelt, A., Borrell, C., Palència, L., Goday, A., Spadea, T., Gnavi, R.,... Kunst, AE. (2013). Socioeconomic inequalities in the incidence and prevalence of type 2 diabetes mellitus in Europe. Gaceta Sanitaria, 27, 494–501. doi: 10.1016/j.gaceta.2013.03.002.

Font-Ribera, L., Garcia-Continente, X., Pérez, A., Torres, R., Sala, N., Espelt, A., y Nebot, M. (2013). Driving under the influence of alcohol or drugs among adolescents: The role of urban and rural environments. Accident Analysis & Prevention, 60, 1–4. doi:10.1016/j.aap.2013.07.031.

Gual, A., Segura, L., Contel, M., Heather, N., y Colom, J. (2002). Audit-3 and audit-4: effectiveness of two short forms of the alcohol use disorders identification test. Alcohol Alcohol, 37, 591–596. doi: 10.1093/alcalc/37.6.591.

Jamieson, L. M., Gunthorpe, W., Cairney, S. J., Sayers, S. M., Roberts-Thomson, K. F., y Slade, G. D. (2010). Substance use and periodontal disease among Australian Aboriginal young adults. Addiction, 105, 719–726. doi: 10.1111/j.1360-0443.2009.02851.x.

McNutt, L. A., Wu, C., Xue, X., y Hafner, J. P. (2003). Estimating the Relative Risk in Cohort Studies and Clinical Trials of Common Outcomes. American Journal of Epidemiology, 157, 940–943. doi: 10.1093/aje/kwg074

Meneses-Gaya, C., Zuardi, A. W., Loureiro, S. R., Hallak, J. E. C., Trzesniak, C., de Azevedo Marques, J. M.,... Crippa, JA. (2010). Is the full version of the AUDIT really necessary? Study of the validity and internal construct of its abbreviated versions. Alcoholism, Clinical and Experimental Research, 34, 1417–1424. doi: 10.1111/j.1530-0277.2010.01225.x.

Palencia, L., Espelt, A., Rodriguez-Sanz, M., Puigpinos, R., Pons-Vigues, M., Pasarin, M. I.,... Borrell, C. (2010). Socio-economic inequalities in breast and cervical cancer screening practices in Europe: influence of the type of screening program. Internal Journal of Epidemioogyl, 39, 757–765. doi: 10.1093/ije/dyq003.

Sarasa-Renedo, A., Espelt, A., Folch, C., Vecino, C., Majó, X., Castellano, Y.,... Brugal, MT. (2014). Overdose prevention in injecting opioid users: the role of substance abuse treatment and training programs. Gaceta Sanitaria, 28, 146–54. doi:10.1016/j.gaceta.2013.10.012.

Schiaffino, A., Rodriguez, M., Pasarin, M. I., Regidor, E., Borrell, C. y Fernandez, E. (2003). [Odds ratio or prevalence ratio? Their use in cross-sectional studies]. Gaceta.Sanitaria, 17, 70–74.

Shishehbor, M. H., Litaker, D., and Lauer, M. S. (2006). Mediators of the association between mortality risk and socioeconomic status - Reply. JAMA: The Journal of the American Medical Association, 296, 764–764. doi: 10.1001/jama.296.7.764-a

Szklo, M., & Nieto, J. (2012). Epidemiology: Beyond the Basics (3 edition.). Burlington, Mass: Jones & Bartlett Learning.

Thompson, M. L., Myers, J. E. y Kriebel, D. (1998). Prevalence odds ratio or prevalence ratio in the analysis of cross sectional data: what is to be done? Occupational and Environmental Medicine, 55, 272–277.

Published

2016-06-14

Issue

Section

Originals