Estimulación cerebral no invasiva combinada con neuroimagen: Hacia una medicina de precisión en el tratamiento de las adicciones

Kilian Abellaneda-Pérez, Laia Miquel, Pilar Lusilla-Palacios, Antoni Gual



Palabras clave

Editorial; Estimulación cerebral no invasiva; Neuroimagen; Adicciones.

Texto completo:

PDF PDF (English)


Abellaneda-Pérez, K., Martín-Trias, P., Cassé-Perrot, C., Vaqué-Alcázar, L., Lanteaume, L., Solana, E.,… Bartrés-Faz, D. (2022a). BDNF Val66Met gene polymorphism modulates brain activity following rTMS-induced memory impairment. Scientific reports, 12, 176. doi:10.1038/s41598-021-04175-x.

Abellaneda-Pérez, K., Vaqué-Alcázar, L., Perellón-Alfonso, R., Solé-Padullés, C., Bargalló, N., Salvador, R.,… Bartrés-Faz, D. (2021). Multifocal transcranial direct current stimulation modulates resting-state functional connectivity in older adults depending on the induced current density. Frontiers in aging neuroscience, 13, 725013. doi:10.3389/fnagi.2021.725013.

Abellaneda-Pérez, K., Vaqué-Alcázar, L., Solé-Padullés, C. y Bartrés-Faz, D. (2022b). Combining non-invasive brain stimulation with functional magnetic resonance imaging to investigate the neural substrates of cognitive aging. Journal of neuroscience research, 100, 1159–1170. doi:10.1002/jnr.24514.

Abellaneda-Pérez, K., Vaqué-Alcázar, L., Vidal-Piñeiro, D., Jannati, A., Solana, E., Bargalló, N.,… Bartrés-Faz, D. (2019). Age-related differences in default-mode network connectivity in response to intermittent theta-burst stimulation and its relationships with maintained cognition and brain integrity in healthy aging. NeuroImage, 188, 794–806. doi:10.1016/j.neuroimage.2018.11.036.

Antonenko, D., Külzow, N., Sousa, A., Prehn, K., Grittner, U. y Flöel, A. (2018). Neuronal and behavioral effects of multi-day brain stimulation and memory training. Neurobiology of aging, 61, 245–254. doi:10.1016/j.neurobiolaging.2017.09.017.

Benussi, A., Di Lorenzo, F., Dell’Era, V., Cosseddu, M., Alberici, A., Caratozzolo, S.,… Borroni, B. (2017). Transcranial magnetic stimulation distinguishes Alzheimer disease from frontotemporal dementia. Neurology, 89, 665–672. doi:10.1212/WNL.0000000000004232.

Benussi, A., Grassi, M., Palluzzi, F., Koch, G., Di Lazzaro, V., Nardone, R.,… Borroni, B. (2020). Classification accuracy of transcranial magnetic stimulation for the diagnosis of neurodegenerative dementias. Annals of neurology, 87, 394–404. doi:10.1002/ana.25677.

Blumberger, D. M., Vila-Rodriguez, F., Thorpe, K. E., Feffer, K., Noda, Y., Giacobbe, P.,… Downar, J. (2018). Effectiveness of theta burst versus high-frequency repetitive transcranial magnetic stimulation in patients with depression (THREE-D): A randomised non-inferiority trial. Lancet, 391, 1683–1692. doi:10.1016/S0140-6736(18)30295-2.

Burke, M. J., Fried, P. J. y Pascual-Leone, A. (2019). Transcranial magnetic stimulation: Neurophysiological and clinical applications. Handbook of Clinical Neurology, 163, 73–92. doi:10.1016/B978-0-12-804281-6.00005-7.

Cash, R., Weigand, A., Zalesky, A., Siddiqi, S. H., Downar, J., Fitzgerald, P. B. y Fox, M. D. (2021). Using brain imaging to improve spatial targeting of transcranial magnetic stimulation for depression. Biological psychiatry, 90, 689–700. doi:10.1016/j.biopsych.2020.05.033.

Conte, A., Lenzi, D., Frasca, V., Gilio, F., Giacomelli, E., Gabriele, M.,… Inghilleri, M. (2009). Intracortical excitability in patients with relapsing-remitting and secondary progressive multiple sclerosis. Journal of neurology, 256, 933–938. doi:10.1007/s00415-009-5047-0.

Di Lazzaro, V., Pellegrino, G., Di Pino, G., Corbetto, M., Ranieri, F., Brunelli, N.,… Capone, F. (2015). Val66Met BDNF gene polymorphism influences human motor cortex plasticity in acute stroke. Brain stimulation, 8, 92–96. doi:10.1016/j.brs.2014.08.006.

Dinur-Klein, L., Dannon, P., Hadar, A., Rosenberg, O., Roth, Y., Kotler, M. y Zangen, A. (2014). Smoking cessation induced by deep repetitive transcranial magnetic stimulation of the prefrontal and insular cortices: A prospective, randomized controlled trial. Biological psychiatry, 76, 742–749. doi:10.1016/j.biopsych.2014.05.020.

Dosenbach, N. U., Visscher, K. M., Palmer, E. D., Miezin, F. M., Wenger, K. K., Kang, H. C.,… Petersen, S. E. (2006). A core system for the implementation of task sets. Neuron, 50, 799–812. doi:10.1016/j.neuron.2006.04.031.

Dunlop, K., Hanlon, C. A. y Downar, J. (2017). Noninvasive brain stimulation treatments for addiction and major depression. Ann N Y Acad Sci, 1394, 31-54. doi:10.1111/nyas.12985. 

Eichhammer, P., Johann, M., Kharraz, A., Binder, H., Pittrow, D., Wodarz, N. y Hajak, G. (2003). High-frequency repetitive transcranial magnetic stimulation decreases cigarette smoking. The Journal of clinical psychiatry, 64, 951–953. doi:10.4088/jcp.v64n0815.

Fox, M. D., Buckner, R. L., White, M. P., Greicius, M. D. y Pascual-Leone, A. (2012). Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate. Biological psychiatry, 72, 595–603. doi:10.1016/j.biopsych.2012.04.028.

Goodkind, M., Eickhoff, S. B., Oathes, D. J., Jiang, Y., Chang, A., Jones-Hagata, L. B.,… Etkin, A. (2015). Identification of a common neurobiological substrate for mental illness. JAMA psychiatry, 72, 305–315. doi:10.1001/jamapsychiatry.2014.2206.

Hallett, M. (2007). Transcranial magnetic stimulation: A primer. Neuron, 55, 187–199. doi:10.1016/j.neuron.2007.06.026.

Hamada, M., Murase, N., Hasan, A., Balaratnam, M. y Rothwell, J. C. (2013). The role of interneuron networks in driving human motor cortical plasticity. Cerebral cortex, 23, 1593–1605. doi:10.1093/cercor/bhs147.

Hanlon, C. A., Canterberry, M., Taylor, J. J., DeVries, W., Li, X., Brown, T. R. y George, M. S. (2013). Probing the frontostriatal loops involved in executive and limbic processing via interleaved TMS and functional MRI at two prefrontal locations: A pilot study. PloS one, 8, e67917. doi:10.1371/journal.pone.0067917.

Hanlon, C. A., Dowdle, L. T., Austelle, C. W., DeVries, W., Mithoefer, O., Badran, B. W. y George, M. S. (2015). What goes up, can come down: Novel brain stimulation paradigms may attenuate craving and craving-related neural circuitry in substance dependent individuals. Brain research, 1628, 199–209. doi:10.1016/j.brainres.2015.02.053.

Hu, Y., Salmeron, B. J., Gu, H., Stein, E. A. y Yang, Y. (2015). Impaired functional connectivity within and between frontostriatal circuits and its association with compulsive drug use and trait impulsivity in cocaine addiction. JAMA psychiatry, 72, 584–592. doi:10.1001/jamapsychiatry.2015.1.

Huang, Y. Z., Edwards, M. J., Rounis, E., Bhatia, K. P. y Rothwell, J. C. (2005). Theta burst stimulation of the human motor cortex. Neuron, 45, 201–206. doi:10.1016/j.neuron.2004.12.033.

Jannati, A., Block, G., Oberman, L. M., Rotenberg, A. y Pascual-Leone, A. (2017). Interindividual variability in response to continuous theta-burst stimulation in healthy adults. Clinical neurophysiology : Official journal of the International Federation of Clinical Neurophysiology, 128, 2268–2278. doi:10.1016/j.clinph.2017.08.023.

Joutsa, J., Moussawi, K., Siddiqi, S. H., Abdolahi, A., Drew, W., Cohen, A. L.,… Fox, M. D. (2022). Brain lesions disrupting addiction map to a common human brain circuit. Nature medicine, 28, 1249–1255. doi:10.1038/s41591-022-01834-y.

Kearney-Ramos, T. E., Dowdle, L. T., Mithoefer, O. J., Devries, W., George, M. S. y Hanlon, C. A. (2019). State-dependent effects of ventromedial prefrontal cortex continuous thetaburst stimulation on cocaine cue reactivity in chronic cocaine users. Frontiers in psychiatry, 10, 317. doi:10.3389/fpsyt.2019.00317.

Koob, G. F. y Volkow, N. D. (2016). Neurobiology of addiction: A neurocircuitry analysis. The lancet. Psychiatry, 3, 760–773. doi:10.1016/S2215-0366(16)00104-8.

Li, X., Hartwell, K. J., Henderson, S., Badran, B. W., Brady, K. T. y George, M. S. (2020). Two weeks of image-guided left dorsolateral prefrontal cortex repetitive transcranial magnetic stimulation improves smoking cessation: A double-blind, sham-controlled, randomized clinical trial. Brain stimulation, 13, 1271–1279. doi:10.1016/j.brs.2020.06.007.

Martín-Trias, P., Lanteaume, L., Solana, E., Cassé-Perrot, C., Fernández-Cabello, S., Babiloni, C.,… Bartrés-Faz, D. (2018). Adaptability and reproducibility of a memory disruption rTMS protocol in the PharmaCog IMI European project. Scientific reports, 8, 9371. doi:10.1038/s41598-018-27502-1.

Meinzer, M., Lindenberg, R., Phan, M. T., Ulm, L., Volk, C. y Flöel, A. (2015). Transcranial direct current stimulation in mild cognitive impairment: Behavioral effects and neural mechanisms. Alzheimer’s & dementia : The journal of the Alzheimer’s Association, 11, 1032–1040. doi:10.1016/j.jalz.2014.07.159.

Menon, V. y Uddin, L. Q. (2010). Saliency, switching, attention and control: A network model of insula function. Brain structure & function, 214, 655–667. doi:10.1007/s00429-010-0262-0.

Miquel, L., Rehm, J., Shield, K. D., Vela, E., Bustins, M., Segura, L.,… Gual, A. (2018). Alcohol, tobacco and health care costs: A population-wide cohort study (n = 606 947 patients) of current drinkers based on medical and administrative health records from Catalonia. European journal of public health, 28, 674–680. doi:10.1093/eurpub/ckx236.

Mokdad, A. H., Marks, J. S., Stroup, D. F. y Gerberding, J. L. (2004). Actual causes of death in the United States, 2000. JAMA, 291, 1238–1245. doi:10.1001/jama.291.10.1238.

Nettekoven, C., Volz, L. J., Leimbach, M., Pool, E. M., Rehme, A. K., Eickhoff, S. B.,… Grefkes, C. (2015). Inter-individual variability in cortical excitability and motor network connectivity following multiple blocks of rTMS. NeuroImage, 118, 209–218. doi:10.1016/j.neuroimage.2015.06.004.

Nitsche, M. A. y Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of physiology, 527, 633–639. doi:10.1111/j.1469-7793.2000.t01-1-00633.x.

Orlov, N. D., O’Daly, O., Tracy, D. K., Daniju, Y., Hodsoll, J., Valdearenas, L.,… Shergill, S. S. (2017). Stimulating thought: A functional MRI study of transcranial direct current stimulation in schizophrenia. Brain: A journal of neurology, 140, 2490–2497. doi:10.1093/brain/awx170.

Perellón-Alfonso, R., Redondo-Camós, M., Abellaneda-Pérez, K., Cattaneo, G., Delgado-Gallén, S., España-Irla, G.,… Bartrés-Faz, D. (2022). Prefrontal reactivity to TMS perturbation as a toy model of mental health outcomes during the COVID-19 pandemic. Heliyon, 8, e10208. doi:10.1016/j.heliyon.2022.e10208.

Ridding, M. C. y Rothwell, J. C. (2007). Is there a future for therapeutic use of transcranial magnetic stimulation? Nature reviews. Neuroscience, 8, 559–567. doi:10.1038/nrn2169.

Rossini, P. M., Burke, D., Chen, R., Cohen, L. G., Daskalakis, Z., Di Iorio, R.,… Ziemann, U. (2015). Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clinical neurophysiology : Official journal of the International Federation of Clinical Neurophysiology, 126, 1071–1107. doi:10.1016/j.clinph.2015.02.001.

Ruffini, G., Fox, M. D., Ripolles, O., Miranda, P. C. y Pascual-Leone, A. (2014). Optimization of multifocal transcranial current stimulation for weighted cortical pattern targeting from realistic modeling of electric fields. NeuroImage, 89, 216–225. doi:10.1016/j.neuroimage.2013.12.002.

Saturnino, G. B., Thielscher, A., Madsen, K. H., Knösche, T. R. y Weise, K. (2019). A principled approach to conductivity uncertainty analysis in electric field calculations. NeuroImage, 188, 821–834. doi:10.1016/j.neuroimage.2018.12.053.

Vink, J., Mandija, S., Petrov, P. I., van den Berg, C., Sommer, I. y Neggers, S. (2018). A novel concurrent TMS-fMRI method to reveal propagation patterns of prefrontal magnetic brain stimulation. Human brain mapping, 39, 4580–4592. doi:10.1002/hbm.24307.

Volkow, N. D., Michaelides, M. y Baler, R. (2019). The neuroscience of drug reward and addiction. Physiological reviews, 99, 2115–2140. doi:10.1152/physrev.00014.2018.

Volkow, N. D., Wang, G. J., Fowler, J. S., Tomasi, D. y Telang, F. (2011). Addiction: Beyond dopamine reward circuitry. Proceedings of the National Academy of Sciences of the United States of America, 108, 15037–15042. doi:10.1073/pnas.1010654108.

Wagner, T., Eden, U., Fregni, F., Valero-Cabre, A., Ramos-Estebanez, C., Pronio-Stelluto, V.,… Pascual-Leone, A. (2008). Transcranial magnetic stimulation and brain atrophy: A computer-based human brain model study. Experimental brain research, 186, 539–550. doi:10.1007/s00221-007-1258-8.

Weigand, A., Horn, A., Caballero, R., Cooke, D., Stern, A. P., Taylor, S. F.,… Fox, M. D. (2018). Prospective validation that subgenual connectivity predicts antidepressant efficacy of transcranial magnetic stimulation sites. Biological psychiatry, 84, 28–37. doi:10.1016/j.biopsych.2017.10.028.

WHO. Alcohol: Fact sheet. (2018). Recuperado de

Zhang, Y., Gong, J., Xie, C., Ye, E. M., Jin, X., Song, H.,… Shao, Y. (2015). Alterations in brain connectivity in three sub-regions of the anterior cingulate cortex in heroin-dependent individuals: Evidence from resting state fMRI. Neuroscience, 284, 998–1010. doi:10.1016/j.neuroscience.2014.11.007.


Enlaces refback

  • No hay ningún enlace refback.