Impacto de políticas de control de alcohol en las tasas de mortalidad por ictus hemorrágico e isquémico en Lituania: Análisis de series temporales interrumpidas

Kawon Victoria Kim, Jürgen Rehm, Xinyang Feng, Huan Jiang, Jakob Manthey, Ričardas Radišauskas, Mindaugas Štelemėkas, Alexander Tran, Anush Zafar, Shannon Lange


Dado el impacto del alcohol en los ictus, las políticas de control de alcohol deberían reducir las tasas de mortalidad. Nuestro objetivo fue demostrar el impacto de tres importantes políticas lituanas implementadas en 2008, 2017 y 2018 en las tasas de mortalidad específicas por subtipo de ictus y sexo, en mayores de 15 años. Se realizaron análisis de regresión «joinpoint» para identificar los cambios de tendencia. Para estimar el impacto, se realizaron análisis de series temporales interrumpidas utilizando un modelo mixto aditivo generalizado en las tasas mensuales estandarizadas por edad, desde enero 2001 hasta diciembre 2018. Se encontraron disminuciones porcentuales anuales promedio significativas en ambos subtipos de ictus y por sexo. Las políticas tuvieron un mayor impacto en las tasas de mortalidad por ictus isquémico en mujeres. Posterior a la política del 2008, ocurrió un cambio positivo de 4,498 muertes por ictus isquémico por 100 000 mujeres y un cambio de pendiente mensual negativo de -0,048 muertes por ictus isquémico por 100 000 mujeres. Posterior a las políticas de 2017 y 2018, hubo un cambio de tendencia negativo significativo para la mortalidad por ictus isquémico en mujeres, de -0.901 muertes y -1.431 muertes por 100 000 habitantes, respectivamente. La mortalidad por ictus hemorrágico en hombres no se vio afectada, y la mortalidad por ictus hemorrágico en mujeres y por ictus isquémico en hombres solo se vio afectada por la política del 2008. Nuestros hallazgos sugieren que el impacto de las políticas en la mortalidad por ictus puede variar según sexo y subtipo.

Palabras clave

Alcohol; ictus; mortalidad; política sanitaria; Lituania.

Texto completo:

PDF PDF (English)


Beard, E., Marsden, J., Brown, J., Tombor, I., Stapleton, J., Michie, S. y West, R. (2019). Understanding and using time series analyses in addiction research. Addiction, 114, 1866–1884. doi:10.1111/add.14643.

Chisholm, D., Moro, D., Bertram, M., Pretorius, C., Gmel, G., Shield, K. y Rehm, J. (2018). Are the “best buys” for alcohol control still valid? An update on the comparative cost-effectiveness of alcohol control strategies at the global level. Journal of Studies on Alcohol and Drugs, 79, 514–522. doi:10.15288/JSAD.2018.79.514.

Devroye, L. (1986). General principles in random variate generation. En Non-Uniform Random Variate Generation (p. 87). New York: Springer-Verlag New York Inc.

Eurostat. (2013). 2013 edition Revision of the European standard population report of Eurostat’s task force. doi:10.2785/11470.

GBD 2019 Stroke Collaborators. (2021). Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. The Lancet Neurology, 20, 1–26. doi:10.1016/S1474-4422(21)00252-0.

Holmes, J., Meier, P. S., Booth, A., Guo, Y. y Brennan, A. (2012). The temporal relationship between per capita alcohol consumption and harm: A systematic review of time lag specifications in aggregate time series analyses. Drug and Alcohol Dependence, 123, 7–14. doi:10.1016/j.drugalcdep.2011.12.005.

IHME. (2020). Global Burden of Disease Study 2019 (GBD 2019) Cause List Mapped to ICD Codes | GHDx. Recuperado de

Jiang, H., Lange, S., Tran, A., Imtiaz, S. y Rehm, J. (2021). Determining the sex-specific distributions of average daily alcohol consumption using cluster analysis: Is there a separate distribution for people with alcohol dependence? Population Health Metrics, 19, 1–11. doi:10.1186/s12963-021-00261-4.

Kim, H. J., Fay, M. P., Feuer, E. J. y Midthune, D. N. (2000). Permutation tests for joinpoint regression with applications to cancer rates. Statistics in Medicine, 19, 335–351. doi:10.1002/(SICI)1097-0258(20000215)19:3<335::AID-SIM336>3.0.CO;2-Z.

Kutkiene, S., Petrulioniene, Z., Laucevicius, A., Cerkauskiene, R., Staigyte, J., Saulyte, A.,… Rinkuniene, E. (2018). Lipid profile evaluation and severe hypercholesterolaemia screening in the middle-aged population according to nationwide primary prevention programme in Lithuania. Atherosclerosis, 277, 267–272. doi:10.1016/j.atherosclerosis.2018.06.008.

Laucevičius, A., Rinkūnienė

, E., Petrulionienė

, Ž., Ryliškytė

, L., Jucevičienė

, A., Puronaitė

, R.,… Kasiulevičius, V. (2020). Trends in cardiovascular risk factor prevalence among Lithuanian middle-aged adults between 2009 and 2018. Atherosclerosis, 299, 9–14. doi:10.1016/j.atherosclerosis.2020.02.025.

Lee, C. B., Liao, C. M., Peng, L. H. y Lin, C. M. (2019). Economic fluctuations and cardiovascular diseases: A multiple-input time series analysis. PLoS ONE, 14. doi:10.1371/journal.pone.0219358.

Lhachimi, S. K., Cole, K. J., Nusselder, W. J., Smit, H. A., Baili, P., Bennett, K.,… Boshuizen, H. (2012). Health impacts of increasing alcohol prices in the European Union: A dynamic projection. Preventive Medicine, 55, 237–243. doi:10.1016/j.ypmed.2012.06.006.

Lithuanian Department of Statistics. (n.d.). Main Lithuanian indicators. Recuperado de

Lithuanian Department of Statistics. (2020a). GDP per capita, at current prices. Recuperado de

Lithuanian Department of Statistics. (2020b). Unemployment rate in Lithuania. Recuperado de

Lithuanian Department of Statistics. (2021). Consumer price indices (2015 – 100).

Mackenbach, J. P., Valverde, J. R., Artnik, B., Bopp, M., Brønnum-Hansen, H., Deboosere, P.,… Nusselder, W. J. (2018). Trends in health inequalities in 27 European countries. Proceedings of the National Academy of Sciences of the United States of America, 115, 6440–6445. doi:10.1073/pnas.1800028115.


, L., Midttun, N. G., Galkus, L., Belian, G., Petkevičienė

, J., Vaitkevičiūtė

, J. y Štelemėkas, M. (2020). Review of the lithuanian alcohol control legislation in 1990–2020. International Journal of Environmental Research and Public Health, 17. doi:10.3390/ijerph17103454.

O’Donnell, M. J., Chin, S. L., Rangarajan, S., Xavier, D., Liu, L., Zhang, H.,… Yusuf, S. (2016). Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTERSTROKE): A case-control study. The Lancet, 388, 761–775. doi:10.1016/S0140-6736(16)30506-2.

Patra, J., Taylor, B., Irving, H., Roerecke, M., Baliunas, D., Mohapatra, S. y Rehm, J. (2010). Alcohol consumption and the risk of morbidity and mortality for different stroke types - a systematic review and meta-analysis. BMC Public Health, 10, 258. doi:10.1186/1471-2458-10-258.

Pun, V. C., Lin, H., Kim, J. H., Yip, B. H. K., Chung, V. C. H., Wong, M. C. S.,… Tian, L. (2013). Impacts of alcohol duty reductions on cardiovascular mortality among elderly Chinese: A 10-year time series analysis. Journal of Epidemiology and Community Health, 67, 514–518. doi:10.1136/jech-2012-201859.

Razvodovsky, Y. E. (2014). Fraction of stroke mortality attributable to alcohol consumption in Russia. Adicciones, 26, 126–133. doi:10.20882/ADICCIONES.14.

Rehm, J., Gmel, G. E., Gmel, G., Hasan, O. S. M., Imtiaz, S., Popova, S.,… Shuper, P. A. (2017). The relationship between different dimensions of alcohol use and the burden of disease—an update. Addiction, 112, 968–1001. doi:10.1111/add.13757.

Rehm, J., Štelemėkas, M., Ferreira-Borges, C., Jiang, H., Lange, S., Neufeld, M.,… Manthey, J. (2021). Classifying alcohol control policies with respect to expected changes in consumption and alcohol-attributable harm: The example of Lithuania, 2000–2019. International Journal of Environmental Research and Public Health, 18, 1–13. doi:10.3390/ijerph18052419.


, E., Petrulionienė

, Ž., Dženkevičiūtė

, V., Gimžauskaitė

, S., Mainelis, A., Puronaitė

, R.,… Laucevičius, A. (2019). Trends in cigarette smoking among middle-aged lithuanian subjects participating in the primary prevention program between 2009 and 2016. Medicina (Lithuania), 55, 130. doi:10.3390/medicina55050130.

RStudio Team. (2020). RStudio: Integrated Development Environment for R. Boston, MA: RStudio, PBC.

Schmidt, L. A., Mäkelä, P., Rehm, J. y Room, R. (2010). Alcohol: Equity and social determinants. En E. Blas y A. S. Kurup (Eds.), Equity, social determinants and public health programmes (pp. 11–29). Geneva: World Health Organization.

Shah, R., Wilkins, E., Nichols, M., Kelly, P., El-Sadi, F., Lucy Wright, F. y Townsend, N. (2019). Epidemiology report: Trends in sex-specific cerebrovascular disease mortality in Europe based on WHO mortality data. European Heart Journal, 40, 755–764. doi:10.1093/eurheartj/ehy378.

Shapiro, S. S. y Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52, 591–611. doi:10.1093/biomet/52.3-4.591.

Shield, K., Manthey, J., Rylett, M., Probst, C., Wettlaufer, A., Parry, C. D. H. y Rehm, J. (2020). National, regional, and global burdens of disease from 2000 to 2016 attributable to alcohol use: A comparative risk assessment study. The Lancet Public Health, 5, 51–61. doi:10.1016/S2468-2667(19)30231-2.

Statistical Methodology and Applications Branch, Surveillance Research Program, N. C. I. (2020). Joinpoint Regression Program.

Štelemėkas, M., Manthey, J., Badaras, R., Casswell, S., Ferreira-Borges, C., Kalėdienė

, R.,… Rehm, J. (2021). Alcohol control policy measures and all-cause mortality in Lithuania: An interrupted time–series analysis. Addiction, 116, 2673–2684. doi:10.1111/add.15470.

Stuckler, D., Meissner, C. M. y King, L. P. (2008). Can a bank crisis break your heart? Globalization and Health, 4, 1–4. doi:10.1186/1744-8603-4-1.

World Health Organization. (2017). ‘Best Buys’ and Other Recommended Interventions for the Prevention and Control of Noncommunicable Diseases. Geneva, Switzerland.

World Health Organization. (2018). Global status report on alcohol and health 2018. Recuperado de

Zatoński, W. A., Sulkowska, U., Mańczuk, M., Rehm, J., Boffetta, P., Lowenfels, A. B. y La Vecchia, C. (2010). Liver cirrhosis mortality in Europe, with special attention to Central and Eastern Europe. European Addiction Research, 16, 193–201. doi:10.1159/000317248.


Enlaces refback

  • No hay ningún enlace refback.