Fenofibrato -un agonista de PPARα- incrementa los niveles de la alcohol deshidrogenasa hepática: implicaciones para su posible uso como una droga de aversión al etanol

Daniel Muñoz, Mario Rivera-Meza, Osvaldo Flores-Bastías, María Elena Quintanilla, Eduardo Karahanian

Resumen


Tras consumir etanol, el disulfiram incrementa los niveles de acetaldehído en sangre y genera una reacción aversiva que desalienta el consumo de alcohol. Dados los importantes efectos secundarios del disulfiram, es altamente deseable hallar otros fármacos efectivos para tratar el trastorno por uso de alcohol. Se ha reportado que administrar fenofibrato a ratas altamente bebedoras de alcohol aumenta los niveles de catalasa hepática y acetaldehído en sangre después de la administración de etanol, y disminuye el consumo voluntario de alcohol (60-70%). Este trabajo evalúa si el fenofibrato tiene un efecto adicional sobre la actividad de otras enzimas en el metabolismo del etanol que podría contribuir a generar altos niveles de acetaldehído. Se permitió a ratas macho altamente bebedoras beber voluntariamente etanol 10% durante 2 meses. Después, se les administró oralmente fenofibrato (100 mg/kg/día) o solo vehículo durante 14 días. Tras eso, se midieron los niveles hepáticos y actividades enzimáticas de alcohol deshidrogenasa (ADH1) y de aldehído deshidrogenasa (ALDH2). El fenofibrato produjo un marcado aumento en los niveles proteicos de ADH1 (396% ± 18%, p < ,001) y de actividad enzimática (425% ± 25%, p < ,001) sin alterar los niveles protéicos ni la actividad de ALDH2. Los resultados muestran que el tratamiento con fenofibrato no solo aumenta la actividad de catalasa en el hígado de ratas bebedoras de alcohol, sino que también incrementa los niveles y la actividad de ADH1, sin alterar ALDH2. Esto contribuye a explicar el notable efecto del fenofibrato en aumentar los niveles de acetaldehído en sangre en animales bebedores de alcohol, en los que se registra una marcada reducción en la ingesta de etanol.

 

Palabras clave


Fibrato; Receptor activado por proliferadores de peroxisomas; PPAR; Alcohol deshidrogenasa; Tratamiento trastorno por uso de alcohol.

Texto completo:

PDF PDF (English)

Referencias


Badger, T.M., Hoog, J. O, Svensson, S., McGehee, R. E. Jr., Fang, C., Ronis, M. J. & Ingelman-Sundberg M. (2000). Cyclic expression of class I alcohol dehydrogenase in male rats treated with ethanol. Biochemical and Biophysical Research Communications, 274, 684-688. doi:10.1006/bbrc.2000.3186.

Blednov, Y. A., Black, M., Benavidez, J. M., Stamatakis, E. E. & Harris, R.A. (2016). PPAR agonists: I. Role of receptor subunits in alcohol consumption in male and female mice. Alcoholism: Clinical and Experimental Research, 40, 553-562. doi:10.1111/acer.12976.

Christensen, J. K., Moller, I. W., Ronsted, P., Angelo, H. R. & Johansson, B. (1991). Dose-effect relationship of disulfiram in human volunteers. I: Clinical studies. Pharmacology & Toxicology, 68, 163-165. doi:10.1111/j.1600-0773.1991.tb01215.x.

Crabb, D. W., Pinaire, J., Chou, W.Y., Sissom, S., Peters, J.M., Harris, R. A. & Stewart, M. (2001). Peroxisome proliferator-activated receptors (PPAR) and the mitochondrial aldehyde dehydrogenase (ALDH2) promoter in vitro and in vivo. Alcoholism Clinical and Experimental Research, 25, 945-952. doi:10.1111/j.1530-0277.2001.tb02301.x.

Deaciuc, I. V., Arteel, G. E., Peng, X., Hill, D. B. & McClain, C. J. (2004). Gene expression in the liver of rats fed alcohol by means of intragastric infusion. Alcohol, 33, 17-30. doi:10.1016/j.alcohol.2004.04.001.

Dupuy, O., Flocard, F., Vial, C., Rode, G., Carles, N., Boisson, D. & Flechaire, A. (1995). Disulfiram toxicity. Le Revue de Medecine Interne, 16, 67-72. doi:10.1016/0248-8663(96)80667-9.

Faiman, M. D., Jensen, J. C. & Lacoursiere, R. B. (1984). Elimination kinetics of disulfiram in alcoholics after single and repeated doses. Clinical Pharmacology and Therapeutics, 36, 520–526. doi:10.1038/clpt.1984.213.

Ferguson, L. B., Most, D., Blednov, Y. A. & Harris, R. A. (2014). PPAR agonists regulate brain gene expression: relationship to their effects on ethanol consumption. Neuropharmacology, 86, 397-407. doi:10.1016/j.neuropharm.2014.06.024.

Frye, R. F. & Branch, R. A. (2002). Effect of chronic disulfiram administration on the activities of CYP1A2, CYP2C19, CYP2D6, CYP2E1, and N-acetyltransferase in healthy human subjects. British Journal of Clinical Pharmacology, 53, 155–162. doi:10.1046/j.1365-2125.2002.01522.x.

Gervois, P., Fruchart, J. C. & Staels, B. (2007). Drug Insight: mechanisms of action and therapeutic applications for agonists of peroxisome proliferator-activated receptors. Nature Clinical Practice Endocrinology & Metabolism, 3, 145-156. doi:10.1038/ncpendmet0397.

Haile, C. N. & Kosten, T. A. (2017). The peroxisome proliferator-activated receptor alpha agonist fenofibrate attenuates alcohol self-administration in rats. Neuropharmacology, 116, 364-370. doi:10.1016/j.neuropharm.2017.01.007.

Handler, J. A. & Thurman, R. G. (1988a). Catalase-dependent ethanol oxidation in perfused rat liver. Requirement for fatty-acid-stimulated H2O2 production by peroxisomes. European Journal of Biochemistry, 176, 477-484. doi:10.1111/j.1432-1033.1988.tb14305.x.

Handler, J. A. & Thurman, R. G. (1988b). Hepatic ethanol metabolism is mediated predominantly by catalase-H2O2 in the fasted state. FEBS Letters, 238, 139-141. doi:10.1016/0014-5793(88)80243-6.

He, L., Ronis, M. J. & Badger, T. M. (2002). Ethanol induction of class I alcohol dehydrogenase expression in the rat occurs through alterations in CCAAT/enhancer binding proteins beta and gamma. The Journal of Biological Chemistry, 277, 43572-43577. doi:10.1074/jbc.M204535200.

Hellström, E. & Tottmar, O. (1982). Effects of aldehyde dehydrogenase inhibitors on enzymes involved in the metabolism of biogenic aldehydes in rat liver and brain. Biochemical Pharmacology, 31, 3899–3905. doi:10.1016/0006-2952(82)90308-2.

Israel, Y., Rivera-Meza, M., Karahanian, E., Quintanilla, M. E., Tampier, L., Morales, P. & Herrera-Marschitz, M. (2013). Gene specific modifications unravel ethanol and acetaldehyde actions. Frontiers in Behavioral Neuroscience, 7, 80. doi:10.3389/fnbeh.2013.00080.

Israel, Y., Quintanilla, M. E., Karahanian, E., Rivera-Meza, M. & Herrera-Marschitz, M. (2015). The “first hit” toward alcohol reinforcement: role of ethanol metabolites. Alcoholism Clinical and Experimental Research, 39, 776-786.  doi:10.1111/acer.12709.

Karahanian, E., Ocaranza, P. & Israel, Y. (2005). Aldehyde dehydrogenase (ALDH2) activity in hepatoma cells is reduced by an adenoviral vector coding for an ALDH2 antisense mRNA. Alcoholism Clinical and Experimental Research, 29, 1384-1389. doi:10.1097/01.alc.0000174909.91034.7c.

Karahanian, E., Quintanilla, M. E., Tampier, L., Rivera-Meza, M., Bustamante, D., Gonzalez-Lira, V., …Israel, Y. (2011). Ethanol as a prodrug: brain metabolism of ethanol mediates its reinforcing effects. Alcoholism Clinical and Experimental Research, 35, 606-612. doi:10.1111/j.1530-0277.2011.01439.x.

Karahanian, E., Quintanilla, M. E., Fernandez, K. & Israel, Y. (2014). Fenofibrate -a lipid-lowering drug- reduces voluntary alcohol drinking in rats. Alcohol, 48, 665–670. doi:10.1016/j.alcohol.2014.08.004.

Karahanian, E., Rivera-Meza, M., Tampier, L., Quintanilla, M. E., Herrera-Marschitz, M. & Israel, Y. (2015). Long-term inhibition of ethanol intake by the administration of an aldehyde dehydrogenase-2 (ALDH2)-coding lentiviral vector into the ventral tegmental area of rats. Addiction Biology, 20, 336-344. doi:10.1111/adb.12130.

Kramer, J. A., Blomme, E. A., Bunch, R. T., Davila, J. C., Jackson, C. J., Jones, P. F., …Curtiss, S. W. (2003). Transcription profiling distinguishes dose-dependent effects in the livers of rats treated with clofibrate. Toxicologic Pathology, 31, 417-431. doi:10.1080/01926230390202353.

Lee, S. L., Höög, J. O. & Yin, S. J. (2004). Functionality of allelic variations in human alcohol dehydrogenase gene family: assessment of a functional window for protection against alcoholism. Pharmacogenetics, 14, 725-732.

Lieber, C. S. (1988). Pathophysiology of alcoholic liver disease. Molecular Aspects of Medicine, 10, 107-146. doi:10.1016/0098-2997(88)90018-0.

Maisel, N.C., Blodgett, J. C., Wilbourne, P. L., Humphreys, K. & Finney, J. W. (2013). Meta-analysis of naltrexone and acamprosate for treating alcohol use disorders: when are these medications most helpful? Addiction 108: 275-93. doi:10.1111/j.1360-0443.2012.04054.x.

Mark, T. L., Kranzler, H. R., Song, X., Bransberger, P., Poole, V. H. & Crosse, S. (2003). Physicians’ opinions about medications to treat alcoholism. Addiction, 98, 617–626. doi:10.1046/j.1360-0443.2003.00377.x.

Mays, D. C, Nelson, A. N., Fauq, A. H., Shriver, Z. H., Veverka, K. A., Naylor, S. & Lipsky, J. J. (1995). S-methyl N,N-diethylthiocarbamate sulfone, a potential metabolite of disulfiram and potent inhibitor of low Km mitochondrial aldehyde dehydrogenase. Biochemical Pharmacology, 49, 693-700. doi:10.1016/0006-2952(94)00504-F.

Moffit, J. S., Koza-Taylor, P. H., Holland, R. D., Thibodeau, M. S., Beger, R. D., Lawton, M. P. & Manautou, J. E. (2007). Differential gene expression in mouse liver associated with the hepatoprotective effect of clofibrate. Toxicology and Applied Pharmacology, 222, 169-179. doi:10.1016/j.taap.2007.04.008.

Quintanilla, M. E., Israel, Y., Sapag, A. & Tampier, L. (2006). The UChA and UChB rat lines: metabolic and genetic differences influencing ethanol intake. Addiction Biology, 11, 310-323. doi:10.1111/j.1369-1600.2006.00030.x.

Quintanilla, M. E., Tampier, L., Sapag, A., Gerdtzen, Z. & Israel, Y. (2007). Sex differences, alcohol dehydrogenase, acetaldehyde burst, and aversion to ethanol in the rat: a systems perspective. American Journal of Physiology. Endocrinology and Metabolism, 293, E531-537. doi:10.1152/ajpendo.00187.2007.

Rivera-Meza, M., Quintanilla, M. E., Tampier, L., Mura, C. V., Sapag, A. & Israel, Y. (2010). Mechanism of protection against alcoholism by an alcohol dehydrogenase polymorphism: development of an animal model. FASEB Journal, 24, 266-274. doi:10.1096/fj.09-132563.

Rivera-Meza, M., Quintanilla, M. E. & Tampier, L. (2012). Reduction of ethanol consumption in alcohol-preferring rats by dual expression gene transfer. Alcohol and Alcoholism, 47, 102-108. doi:10.1093/alcalc/agr161.

Rivera-Meza, M., Muñoz, D., Jerez, E., Quintanilla, M. E., Salinas-Luypaert, C., Fernandez, K. & Karahanian, E. (2017). Fenofibrate administration reduces alcohol and saccharin intake in rats: possible effects at peripheral and central levels. Frontiers in Behavioral Neuroscience, 11, 133. doi:10.3389/fnbeh.2017.00133.

Sinclair, J. M. A., Chambers, S. E., Shiles, C. J., & Baldwin, D. S. (2016). Safety and tolerability of pharmacological treatment of alcohol dependence: comprehensive review of evidence. Drug Safety, 39, 627–645. doi:10.1007/s40264-016-0416-y.

Skinner, M. D., Lahmek, P., Pham, H. & Aubin, H. J. (2014). Disulfiram efficacy in the treatment of alcohol dependence: a meta-analysis. PLoS One 9, e87366. doi:10.1371/journal.pone.0087366.

Thomasson, H. R., Edenberg, H. J., Crabb, D. W., Mai, X. L., Jerome, R. E., Li, T.K., …Yin, S. J. (1991). Alcohol and aldehyde dehydrogenase genotypes and alcoholism in Chinese men. American Journal of Human Genetics, 48, 677-681.

Thomasson, H. R., Crabb, D. W., Edenberg, H. J., Li, T. K., Hwu, H. G., Chen, C. C., … Yin, S. J. (1994). Low frequency of the ADH2*2 allele among Atayal natives of Taiwan with alcohol use disorders. Alcoholism Clinical and Experimental Research, 18, 640-643. doi:10.1111/j.1530-0277.1994.tb00923.x.

Tzeng, J., Byun, J., Park, J. Y., Yamamoto, T., Schesing, K., Tian, B., … Oka, S. (2015). An ideal PPAR response element bound to and activated by PPARα. PLoS One, 10, e0134996. doi:10.1371/journal.pone.0134996.

Vidal, F., Perez, J., Morancho, J., Pinto, B. & Richart C. (1990). Hepatic alcohol dehydrogenase activity in alcoholic subjects with and without liver disease. Gut, 31, 707-711. doi:10.1136/gut.31.6.707.

Yoshimura, A., Kimura, M., Nakayama, H., Matsui, T., Okudaira, F., Akazawa, S., …Higuchi, S. (2014). Efficacy of disulfiram for the treatment of alcohol dependence assessed with a multicenter randomized controlled trial. Alcoholism Clinical and Experimental Research, 38, 572–578. doi:10.1111/acer.12278.




DOI: https://doi.org/10.20882/adicciones.1226

Enlaces refback

  • No hay ningún enlace refback.