Enzimas cerebrales y psicofarmacología del alcohol

M.D Escarabajal

Resumen


La existencia de un metabolismo cerebral del etanol es desde hace más de una década motivo de controversia, por lo que el trabajo que se presenta tiene, entre otros objetivos, realizar un balance y revisión actualizados de los aspectos más relevantes relacionados con la presencia de acetaldehído, el primer metabolito del etanol, en el cerebro. Para ello se presenta la evidencia bioquímica, conductual y genética existente sobre la presencia, localización, y función de los sistemas enzimáticos implicados en la biotransformación de etanol a acetaldehído y de la posterior transformación de este último a acetato. Los resultados expuestos conducen de forma concluyente a dos aspectos fundamentales, por una parte, la viabilidad de un metabolismo cerebral del alcohol, dado que los sistemas formados por la catalasa y la ALDH cerebrales son la maquinaria enzimática necesaria y suficiente para el oxidación de alcohol a acetaldehído, y la posterior degradación de este a acetato y, por otra, que estos sistemas enzimáticos mediarían algunas de las conductas inducidas por etanol mediante variaciones en la concentración de acetaldehído en el cerebro, lo que supone la implicación del acetaldehído en algunas de las acciones psicofarmacológicas atribuidas tradicionalmente al etanol.


Palabras clave


alcohol; metabolismo; aldehído deshidrogenasa; alcohol deshidrogenasa; catalasa; acetaldehído; revisión

Texto completo:

PDF

Referencias


(1) Tabakoff B, Anderson RA, Ritzmann RF. Brain acetaldehyde after ethanol administration. Biochem Pharmacol. 1976; 25: 1305-09.

(2) Eriksson CJP. Problems and pitfalls in acetaldehyde determinations. Alcohol Clin Exp Res 1980; 4: 22-9.

(3) Deitrich RA. The especifity of ethanol. En: Advances on biomedical alcohol research. 1987; 131-38. Lindros KO. (ed). New York. Pergamon Press.

(4) Sippel HW. The acetaldehyde content in rat brain during ethanol metabolism. J Neurochem 1974; 23: 451-2.

(5) Zimatkin SM. Histochemical study of aldehyde dehydrogenase in the rat CNS. J Neurochem. 1991; 56: 1-11.

(6) Smith BR, Aragon CMG, Amit, Z. Catalase and the production of brain acetaldehyde: a possible mediator of the psychopharmacological effects of ethanol. Addict Biol 1997; 2: 277-89.

(7) Zimatkin SM, Deitrich RA. Ethanol metabolism in the brain. Addict Biol. 1997; 2: 387-99.

(8) Escarabajal MD. Mecanismos implicados en las conductas inducidas por el alcohol: el papel de los enzimas cerebrales responsables del metabolismo del acetaldehído. 2000; Jaén: Servicio de Publicaciones.

(9) Raskin NH, Sokoloff L. Brain alcohol dehydrogenase. Science. 1968; 162: 131-2.

(10) Raskin NH, Sokoloff L. Alcohol dehydrogenase activityin the rat brain and liver. J Neurochem. 1970; 17: 1677-87.

(11) Raskin NH, Sokoloff L. Enzymes catalyzing ethanol metabolism in neural and somatic tissue of the rat. J Neurochem. 1972; 19: 273-82.

(12) Bühler R, Pestalozzi D, Hess M, Von Wartburg JP. Immunohistochemical localization of alcohol dehydrogenase in human kidney, endocrine organs and brain. Pharmacol Biochem Be. 1983; 18: 1. 55-9.

(13) Kerr, JT, Maxwell DS, Crabb DW. Immunocytochemistry of alcohol dehydrogenase in the rat central nervous system. Alcohol Clin ExpRes. 1989; 13: 730-6.

(14) Tabakoff B, Von Wartburg JP. Separation of aldehyde reductases and alcohol dehydrogenase from brain by affinity chromatography: metabolism of succinic semialdehyde and ethanol. Biochem Biophys Res Comm. 1975; 63: 4. 957-66.

(15) Vallee BL, Bazzone TJ. Isozymes of human liver alcohol dehydrogenase. En: Isozymes, current topics in biological and medical research. 1983; Rattazzi MC, Scandalio JG, Whitt GS. (eds). New York. A. R. Liss. Vol. 8.

(16) Lands WEM. A review of alcohol clearance in humans. Alcohol 1998; 15: 147-60.

(17) Duncan RJS, Kline JE, Sokoloff L. Identity of brain alcohol dehydrogenase. Biochem J. 1976; 153: 561-6.

(18) Iborra FJ, Renau-Piqueras J, Portoles M, Boleda MD, Guerri C, Pares X. Immunocytochemical and biochemical demonstration of formaldehyde dehydrogenase (Class III alcohol dehydrogenase) in the nucleus. J Histochem Cytochem. 1992; 40: 1865-78.

(19) Rout U. Alcohol dehydrogenases in the brain of mice. Alcohol Clin Exp Res. 1992; 16: 2. 286-9.

(20) Giri PR, Linnoila M, O’Neill JB, Goldman D. Distribution and possible metabolic role of class III alcohol dehydrogenase in the human brain. Brain Res. 1989; 481: 131-41.

(21) LieberCS. Ethanol metabolism, cirrhosis and alcoholism. Clin Chim Acta 1997; 257: 59-84

(22) Chernikevich IP, Lomeko IE, Voskoboyev AI, Ostrovsky YM.

Evidence on the presence of alcohol dehydrogenase in rat and bovine brain. Neurokhim. 1984; 3: 130-8.

(23) Duester G. A hypothetical mechanism for fetal alcohol

syndrome involving ethanol inhibition of retinoic acid synthesis at the alcohol dehydrogenase step. Alcohol Clin ExpRes. 1991; 15: 568-72.

(24) Shean ML, Duester G. The role of alcohol dehydrogenase in retinoic acid homeostasis and fetal alcohol syndrome. Alcohol Alcohol. Suppl. 1983; 2. 51-6.

(25) Koivusalo M, Baumann M, Uotila L. Evidence for the identity of glutathione-dependent formaldehyde dehydrogenase and Class III alcohol dehydrogenase. FEBS Lett. 1989; 257: 105-9.

(26) Hoog JO, Estonius M, Danielsson O. Site-directed mutagenesis and enzyme properies of mammalian alcohol dehydrogenases correlated with their tissue distribution. EXS. 1994; 71: 301-9.

(27) Sasame HA, Ames MM, Nelson SD. Cytochrome P450 and NADPH cytochrome c reductase in rat brain: formation of reactive catechol metabolites. Biochem Biophys Res Comm. 1977; 78: 919-26.

(28) Ravindranath V, Anandatheerthavarada HK. High activity of cytochrome P450 linked aminopyrine N-demethylase in mouse brain microsomes and associated sex-related differences. Biochem J. 1989; 261: 769-73.

(29) Naslund BMA, Glauman H, Warner M, Gustafsson JA, Hansson T. Cytochrome P450 b and c in the rat brain and pituitary gland. MolPharmacol. 1988; 33: 31-7.

(30) Ravindranath V, Anandatheerthavarada HK, Shankar SK. Xenobiotic metabolism in human brain. Presence of cytochrome P450 and associated mono-oxygenases. Brain Res. 1989; 496: 331-5.

(31) Ghersi-Egea JF, Perrin R, Leininger- Muller B. Subcellular localization of cytochrome P450 and activities of several enzymes responsible for drug metabolism in the human brain. BiochemPharmacol. 1993; 45: 647-58.

(32) Warner M, Gustafsson JA. Effect of ethanol on cytochrome P450 in the rat brain. Proc Nat Ac Sci USA. 1994; 91: 1019-23.

(33) Kholer C, Eriksson LG, Hansson T, Warner M, Gustafsson JA. Immunohistochemical localization of cytochrome P450 in rat brain. NeurosciLett. 1988; 84:109-14.

(34) Warner M, Kholer C, Hansson T, Gustafsson JA. Regional distribution of cytochrome P450 in the rat brain: spectral quantitation and contribution of P450 b and c. J Neurochem. 1988; 50: 1057-65.

(35) Morgan ET, Koop DR, Coon MJ. Catalytic activity of cytochrome P450 isozyme 3a isolated from liver microsomes of ethanol-treated rabbits. J BiolChem. 1982; 257: 13951-7.

(36) Hansson T, Tindberg N, Ingelman-Sundberg M, Kohler C. Regional distribution of ethanol inducible cytochrome P450IIE1 in the rat central nervous system. Neuroscience. 1990; 34: 451-63.

(37) Anandatheerthavarada HK, Shankar SK, Bhamre S, Boyd MR, Song BJ, Ravindranath V. Induction of brain cytochrome P450 IIE1 by chronic ethanol treatment. Brain Res. 1993; 601: 279-285.

(38) Sohda T, Shimizu M, Kamimura S, Okumura M. Immunohistochemical demonstration of ethanolinducible P450 2E1 in rat brain. Alcohol Alcohol. Suppl. 1993; 28: 1B. 69-75.

(39) Montoliu C, Valles S, Renau Piqueras J, Guerri C. Ethanol-induced oxygen radical formation and lipid peroxidation in rat brain: effect of chronic alcohol consumption. J Neurochem. 1994; 63: 1855-62.

(40) Bhagwat SV, Boyd MR, Ravindranath V. Brain mitocondrial cytochromes P450: xenobiotic metabolism, presence of multiple forms and their selective inducibility. ArchBiochem Biophys. 1995; 320: 73-83.

(41) Tindberg N, Ingelman-Sundberg M. Expression, catalytic activity, and inducibility of cytochrome P450 2E1 (CYP2E1) in the rat central nervous system. J Neurochem. 1996; 67: 2066-73.

(42) Upadhya S, Tirumalai S, Boyd MR, Mori T, Ravindranath V. Cytochrome P4502E (CYP2E1) in brain: Constitutive expression, induction by ethanol and localization by fluorescence in situ hybridation. Arch Biochem Biophys 2000; 373: 23-4.

(43) Hunt WA. Role of acetaldehyde in the actions of ethanol on the brain - A review. Alcohol. 1996; 13: 2. 147-51.

(44) Yasmineh WG, Theologides A. Catalase as a roving scavenger of hydrogen peroxide: A hypothesis. J Lab ClinMed. 1993; 122: 110-4.

(45) McKenna O, Arnold G, Holtzman E. Microperoxisome distribution in the central nervous system of the rat. Brain Res. 1976; 117: 181-94.

(46) Gaunt GL, DeDuve C. Subcellular distribution of Damino acid oxidase and catalase in rat brain. J Neurochem. 1976; 26: 749-59.

(47) Brannan TS, Maker HS, Raes IP. Regional distribution of catalase in the adult rat brain. J Neurochem. 1981; 16:1. 307-9.

(48) Zimatkin SM, Lindros KO. Distribution of catalase in rat brain: aminergic neurons as possible targets for ethanol effects. Alcohol Alcohol. 1996; 31:2. 167-74.

(49) Arnold G, Holtzman E. Microperoxisomes in the central nervous system of the postnatal rat. Brain Res. 1978; 155: 1-17.

(50) Aspberg A, Tottmar O. Development of antioxidant enzymes in rat brain and in reaggregation culture fetal rat brain cells. Dev Brain Res. 1992; 66: 55-8.

(51) Aspberg A, Tottmar O. Ethanol-induced increase in catalase activity in reaggregation cultures of rat brain cells is due to increased oligodendrocyte differentiation. Alcohol Clin ExpRes. 1994; 18: 3. 620-4.

(52) Aspberg A, Soderback M, Tottmar O. Increase in catalase activity in developing rat brain cell reaggregation culturein the presence of ethanol. BiochemPharmacol. 1993; 46: 1873-6.

(53) Hamby-Mason R, Chen JJ, Schenker S, Perez A, Henderson GI. Catalase mediates acetaldehyde formation from ethanol in fetal and neonatal rat brain. Alcohol Clin Exp Res. 1997; 21: 6. 1063-72.

(54) Novikoff AB, Novikoff PM. Microperoxisomes. J Histochem Cytochem. 1973; 21: 963-6.

(55) Zimatkin SM, Lindros KO. Comparison of catalse and aldehyde dehydrogenase distribution in rat brain are aminergic neurons affected by acetaldehyde? Alcohol Clin Exp Res. 1994; 19: 35.

(56) Aragon CMG, Rogan F, Amit Z. Ethanol metabolism in rat brain homogenates by a catalase-H2O2 system. Biochem Pharmacol. 1992a; 44: 93-8.

(57) Gill K, Menez JF, Lucas D, Deitrich RA. Enzymatic production of acetaldehyde from ethanol in rat brain tissue. AlcoholClin Exp Res. 1992; 16: 5. 910-5.

(58) Zimatkin SM, Deitrich RA. aldehyde dehydrogenase activities in the brain of rats and mice genetically selected for different sensitivity to alcohol. Alcohol Clin Exp Res. 1995; 19:5. 1300-6.

(59) Motavkin PA, Okhotin VE, Konovko OO, Zimatkin SM. Localization of aldehyde- and alcohol dehydrogenase in the human spinal cord and brain. Neurosci Behav Physiol. 1990; 2: 79-84.

(60) Amit Z, Stern MH. A further investigation of alcohol preference in the laboratory rat induced by hypothalamic stimulation. Psychopharmacology. 1971; 21: 317-27.

(61) Hashimoto T, Ueha T, Kuriyama T, Katsura M, Kuriyama K.

Acetaldehyde-induced alterations in metabolism of monoamines in mouse brain. Alcohol Alcohol. 1989; 24: 91-9.

(62) Heap L, Ward RJ, Abiaka C, Dexter D, Lawlor M, Pratt O, Thomson A, Shaw K, Peters TJ. The influence of brain acetaldehyde on oxidative status, dopamine metabolism, and visual discrimination. Biochem Pharmacol. 1995; 263-70.

(63) Eckardt MJ, File SE, Gessa GL, Grant KA, Guerri C,Hoffman PL, Kalant H, Koob G,F.; Li T-K, Tabakoff B. Effects of moderate alcohol consumption on the central nervous system. Alcohol Clin Exp Res. 1998; 22: 5. 998-1040.

(64) DeMaster EG, Shirota FN, Nagasawa HT. Oxidation of

cyanamide by a cumene hydroperoxide-supported catalase reaction yiels cyanide and an inhibitor of aldehyde dehydrogenase. BiochemArc. 1988; 4: 203-7.

(65) Aragon CMG, Stotland LM, Amit Z. Studies on ethanolbrain

catalase interaction: Evidence for central ethanol oxidation. Alcohol Clin Exp Res. 1991a; 15: . 165-9.

(66) Cohen G, Sinet PM, Heikkila RE. Ethanol oxidation by rat

brain in vivo. Alcohol Clin ExpRes. 1980; 4: 4. 366-70.

(67) Tampier L, Mardones J. Catalase mediated oxidation of ethanol by rat brain homogenates. IRCS. 1979; 7: 389.

(68) Reddy BV, Boyadjieva N, Sarkar DK. Effect of ethanol, propanol, butanol, and catalase enzyme blockers on bendorphin secretion from primary cultures of hypothalamic neurons: evidence for a mediatory role of acetaldehyde in ethanol stimulation of b-endorphin

release. Alcohol Clin Exp Res. 1995; 19: 2. 339-44.

(69) Zimatkin SM, Liopo AV, Deitrich, RA. Distribution and kinetics of ethanol metabolism in rat brain. Alcohol Clin Exp Res. 1998; 22: 8. 1623-7.

(70) Lallemand F, Kest W, Ward RJ, De Witte P. Ethanol metabolism in acatalasemic rats. Alcohol Alcohol. 1999; 34: 3. 465.

(71) Gill K, France G, Amit Z. Voluntary ethanol consumption in rats: an examination of blood/brain ethanol levels and behavior. Alcohol Clin Exp Res. 1986; 10: 457-62.

(72) Cross A, Jones OTG. Enzymic mechanisms of superoxide production. Biochim Biophys Acta. 1991; 1057: 281-98.

(73) Pratt AG, Turrens JF. Ascorbate- and hemoglobindependent brain chemiluminescence. Free Radical Bio Med. 1990; 8: 319-25.

(74) Aragon CMG, Sternklar G, Amit Z. A correlation between voluntary ethanol consumption and brain catalase activity in the rat. Alcohol. 1985a; 2: 353-6.

(75) Amit Z, Aragon CMG. Catalase activity measured in rats naive to ethanol correlates with later voluntary ethanol consumption: possible evidence for a biological marker system of ethanol intake. Psychopharmacology. 1988; 95: 512-5.

(76) Koechling UM, Amit Z. Effects of 3-amino-1,2,4-triazole on brain catalase in the mediation of ethanol consumption in mice. Alcohol. 1994; 11: 3. 235-9.

(77) Aragon CMG, Amit Z. Genetic variation in ethanol sensitivity in C57BL/6 and DBA/2 mice: a further investigation of the differences in brain catalase activity. Ann NY Acad Sci. 1987; 492: 398-400.

(78) Aragon CMG, Amit Z. Differences in ethanol-induced behaviors in normal and acatalasemic mice: systematic examination using a biobehavioral approach. PharmacolBiochem Be. 1993; 44: 547-54.

(79) Aragon CMG, Amit Z. The effects of 3-amino-1,2,4- triazole on voluntary ethanol consumption: evidence for brain catalase involvement in the mechanism of action. Neuropharmacology. 1992b; 31: 7. 709-12.

(80) Tampier L, Quintanilla ME, Mardones J. Influence of 3- amino-1,2,4-triazole pretreatment on ethanol induced narcosis in rats. IRCS Med Sci. 1979; 7: 390.

(81) Tampier L, Quintanilla ME, Letelier C, Mardones J. Effect of 3-amino-1,2,4-triazole on narcosis time and lethality of ethanol in UChA rats. Alcohol. 1988; 5: 5-8

(82) Aragon CMG, Spivak K, Amit Z. Effects of 3-amino- 1,2,4-triazole on ethanol-induced narcosis, lethality and hypothermia in rats. Pharmacol Biochem Be. 1991b ; 39: 55-9.

(83) Aragon CMG, Spivak K, Amit Z. Effects of 3-amino- 1,2,4-triazole on ethanol induced open-field activity: evidence for brain catalase mediation of ethanol’s effects. Alcohol Clin Exp Res. 1989; 13:1. 104-8.

(84) Aragon CMG, Spivak K, Amit Z. Blockade of ethanolinduced conditioned taste aversion by 3-amino-1,2,4-triazole: evidence for catalase mediated systhesis of acetaldehyde in rat brain. Life Sci. 1985b; 37: 22. 2077-84.

(85) Escarabajal MD, Miquel M, Aragon CMG. A psychopharmacological study of the relationship between brain catalase activity and ethanol-induced locomotion on mice. J St. Alcohol. 2000; 61: 4. 493-8.

(86) Escarabajal MD, Aragon CMG. The effect of cyanamide and 4-methylpyrazole on the ethanol-induced locomotor activity. Pharmacol Biochem Be. 2002a; 72:1-2. 389-95.

(87) Escarabajal MD, Aragon CMG. Concurrent administration of diethyldithiocarbamate and 4-methylpyrazole enhances ethanol-induced locomotor activity: the role of brain ALDH. Psychopharmacology. 2002b; 160: 229-43.

(88) Koechling UM, Amit Z. Relationship between blood catalase activity and drinking history in a human population, a possible biological marker of the affinity to consume alcohol. Alcohol Alcohol. 1988; 27:2. 181-8.

(89) Koechling UM, Amit Z, Negrete JC. Family history of alcoholism and the mediation of alcohol intake by catalase. Further evidence for catalase as a marker of the propensity to ingest alcohol. Alcohol Clin Exp Res. 1995; 19: 5. 1096-1104.

(90) Eriksson CJP. The role of acetaldehyde in the actions os alcohol (update 2000). Alcohol Clin Exp Res. 2001; 25:5. 15S-32S.

(91) Westcott JY, Weiner H, Schultz J, Myers RD. In vivo acetaldehyde in the brain of the rat treated with ethanol. Biochem Pharmacol. 1980; 29: 411-7.

(92) Eysseric H, Gonthier B, Soubeyran A, Bessard G, Saxod R, Barret L. Characterization of the production of acetaldehyde by astrocytes in culture after ethanol exposure. Alcohol Clin Exp Res. 1997; 21: 6. 1018-23.

(93) Clarke DW, Steenaart NAE, Slack CJ, Brien JF. Pharmacokinetics of ethanol and its metabolite, acetaldehyde, and fetotolethality in the third-trimester pregnant guinea pig for oral administration of acute, multiple-dose ethanol. Can J Pharmacol. 1986; 64:1060-7.

(94) Reddy BV, Sarkar DK. Effect of alcohol, acetaldehyde, and salsonisol on beta-endorphin secretion from the hypothalamic neurons in primary cultures. Alcohol Clin Exp Res. 1993; 17: 6. 1261-7.

(95) Eriksson CJP, Sippel HW. The distribution and metabolism of acetaldehyde in rats during ethanol oxidation-I. The distribution acetaldehyde in liver, brain, blood and breath. Biochem Pharmacol. 1977; 26: 241-7.

(96) Tampier L, Quintanilla ME, Contreras S, Segovia-Requelme N, Mardones J. Biological similarities and differences between rats genetically different in alcohol preference. Alcohol Alcohol. 1984; 19: 3. 203-9.

(97) Tampier L, Quintanilla ME, Mardones J. Methanol, ethanol and acetaldehyde oxidation rates by homogenates of different brain regions of UChA and UChB rats. IRCS Med Sci. 1980; 8: 157-8.

(98) Quintanilla ME, Tampier L. Acetaldehyde metabolism by brain mitochondria from UChA and UChB rats. Alcohol. 1995; 12: 6. 519-24.

(99) Eriksson CJP. Ethanol and acetaldehyde metabolism in rat strains genetically selected for their ethanol preference. Biochem Pharmacol. 1973; 22: 2283-92.

(100) Zeiner AR, Kegg PS, Blackburn M, Stratton R. Gender differences in peak acetaldehyde concentration after an acute dose of ethanol. Neurobehav Toxicol Teratol. 1983; 5: 2. 201-4.

(101) Lindros KO. Research on experimental and inborn alterations of acetaldehyde metabolism. Implications for treatment of alcoholism. The 2nd Malms Symposium on Alcohol. 1984; 115-125.

(102) Brown Z, Amit Z, Rockman GE. Intraventricularselfadministration of acetaldehyde but not ethanol in naive laboratory rats. Psychopharmacology. 1979; 64: 271-6.

(103) Brown ZW, Amit Z, Smith BR. Intraventricular selfadministration

of acetaldehyde and voluntary consumption of ethanol in rats. Behav Neural Biol. 1980; 28: 150-5.

(104) Rodd-Henricks ZA, Zaffaroni A, Goldstein A, McBride WJ, Li TK. Alcohol Preferring (P) rats self-administer acetaldehyde directely into de posterior VTA (abstract). Alcohol Clin Exp Res Suppl 2000; 5: 24: 52A.

(105) Smith BR, Amit Z, Splawinsky J. Conditioned place preference induced by intraventricular infusions of acetaldehyde. Alcohol. 1984; 1: 193-5.

(106) Quertemont E, De Witte P. Conditioned stimulus preference after acetaldehyde but not ethanol injections. Pharmacol Biochem Be 2001; 68: 449-54.

(107) Inoue K, Lindros KO. Subcellular distribution of human brain aldehyde dehydrogenase. J Neurochem. 1982; 38: 4. 884-8.

(108) Koivula T, Turner AJ, Huttunen M, Koivusalo M. Subcellular and perisynaptic distribution of rat brain aldehyde dehydrogenase activity. J Neurochem. 1981; 36: 1893-7.

(109) Zimatkin SM, Rout UK, Koivusalo M, BŸhler R, Lindros KO. Regional distribution of low-Km mitochondrial aldehyde dehydrogenase in the rat central nervous system. Alcohol Clin Exp Res. 1992; 16: 1162-7.

(110) Weiner H, Ardelt B. Distribution and properties of acetaldehyde dehydrogenase in regions of rat brain. J Neurochem. 1984; 42: 1. 109-15.

(111) Socaransky SM, Aragon CMG, Amit Z. Brain ALDH as a possible modulator of voluntary ethanol intake. Alcohol. 1985; 2: 2. 361-5.

(112) Koivula T, Koivusalo M, Lindros KO. Liver aldehyde and alcohol dehydrogenase activities in rat strains genetically selected for their ethanol preference. Biochem Pharmacol. 1975; 24: 1807-11.

(113) Zimatkin SM, Lindros KO. A histochemical study of the distribution of aldehyde dehydrogenase activity in brain structures of rats with genetically different alcoholrelated behaviour. Alcohol. 1989; 6: 4. 321-5.

(114) Koivisto T, Eriksson CJP. Hepatic aldehyde and alcohol dedydrogenases in alcohol-preferring and alcoholavoiding rat lines. Biochem Pharmacol. 1994; 48: 1551-8.

(115) Mizoi Y, Kogama M, Fukunaga T, Ueno Y, Adachi J, Fujiwara S. Polymorphism of acetaldehyde dehydrogenase and ethanol elimination. Alcohol. 1985; 2: 3. 393-6.

(116) Agarwal DP, Eckey R, Harada S, Goedde HW. Basis of acetaldehyde dehydrogenase deficiency in Orientals immunochemical studies. Alcohol. 1984; 1:2. 111-8.

(117) Tu GC, Israel Y. Alcohol consumption by Orientals in

North America is predicted largely by a single gene. Behav Gene. 1995; 25: 1. 59-65.

(118) Wall TL, Thomasson HR, Schukit MA, Ehlers CL. Subjetive feelings of alcohol intoxication in Asians with genetic variations of ALDH2 alleles. Alcohol Clin Exp Res. 1992; 16: 5. 991-5.

(119) Wolff P. Ethnic differences in alcohol sensitivity. Science. 1972; 175: 449-50.

(120) Peachey JE, Zilm D, Robinson GM, Jacob M, Cappell H. A placebo-controlled double-blind comparative clinical study of the disulfiram- and calcium carbimideacetaldehyde mediated ethanol reactions in social drinkers. Alcohol Clin Exp Res. 1983; 7: 2. 180-7.

(121) Amit Z, Brown ZW, Amir S, Smith B, Sutherland EA. Behavioral assessment of the role of acetaldehyde in the medioation of alcohol intake in animal and humans. En: Animal Models in Alcohol Research. 1980; 159-165; Eriksson V, Sinclair JD, Kiianmaa K. (eds). New York. Academic Press.

(122) Peachey JE, Zilm D, Cappell H. Comparative study of the disulfiram-ethanol reaction and the carbimideethanol reaction in nonalcoholic men. II: Effects of repeated drinks. Clin Pharmacol Ther. 1981a; 29: 2. 271.

(123) Peachey JE, Zilm D, Cappell H, Robertson G. Comparative study of the disulfiram-ethanol reaction and the carbimide-ethanol reaction in nonalcoholic men. I: Effects of initial alcohol exposure. 1981b; 29: 2.271.

(124) Peachey JE, Brien JF, Zilm DH, Loomis CW, Hemy MF, Maglana SM. The calcium cyanamide-ethanol interaction in man. Effects of repeated ethanol administration. J St. Alcohol. 1981c; 42: 3. 208-16.

(125) Koe BK, Tenen SS. Inhibiting action of n-butyraldoxime on ethanol metabolism and on natural preference of C57BL mice. J Pharmacol Exp Ther. 1970; 174: 434-49.

(126) Reed TE, Kalant H, Gibbins RJ, Kapur BM, Rankin JG. Alcohol and acetaldehyde metabolism in Caucasians, Chinese and Amerinds. Can Med Ass. 1976; 115: 851-5.

(127) Mottin JL. Drug-induced attenuation of alcohol consumption. A review and evaluation of claimed, potential or current therapies. J St. Alcohol. 1973; 34: 444-72.

(128) Eriksson CJP, Deitrich RA Evidence against a biphasic effect of acetaldehyde on voluntary ethanol consumption in rats. Pharmacol Biochem Be Suppl. 1980; 13: 1. 291-6.

(129) Sinclair JD, Lindros KO. Supression of alcohol drinking with brain aldehyde dehydrogenase inhibition. Pharmacol Biochem Be. 1981; 14: 3. 377-83.

(130) Sinclair JD, Lindros KO, Tehro K. Aldehyde dehydrogenase inhibitors and voluntary ethanol drinking by rats. En: Alcohol and Aldehyde Metabolizing Systems. 1980; Vol. 4. 481-7; Thurman RG. (ed). New York. Plenum Press.

(131) Spivak K, Aragon CMG, Amit Z. Alterations in brain aldehyde dehydrogenase activity modify the locomotor effects produced by ethanol in rats. Alcohol Drug Res. 1987b; 7: 481-91.

(132) Deitrich RA, Troxell PA, Worth WS, Erwin VG. Inhibition of aldehyde dehydrogenase in brain and liver by cyanamide. Biochem Pharmacol. 1976; 25: 2733-7.

(133) Sinclair JD. Drugs to decrease alcohol drinking. Ann Med. 1990; 22: 5. 357-62.

(134) Brown ZW, Amit Z, Smith BR, Sutherland EA, Selvaggi N. Alcohol-induced euphoria enhanced by disulfiram and calcium carbimide. Alcohol Clin Exp Res. 1983; 7:276-8.

(135) Spivak K, Aragon CMG, Amit Z. Alterations in brain aldehyde dehydrogenase activity modify ethanol induced conditioned taste aversion. Alcohol Clin Exp Res. 1987a; 11: 513-7.

(136) Amir S. Brain and liver aldehyde dehydrogenase: relations to ethanol consumption in wistar rats. Neuropharmacology. 1977; 16: 781-4.

(137) Amir S. Brain and liver aldehyde dehydrogenase activity and voluntary ethanol consumption by rats: Relations to strain, sex and age. Psychopharmacology. 1978a; 57: 97-102.

(138) Socaransky SM, Aragon CMG, Amit Z, Blander A. Higher correlation of ethanol consumption with brain than liver ALDH in three strains of rats. Psychopharmacology. 1984; 84: 2. 250-3.

(139) Amir S. Brain aldehyde dehydrogenase: Adaptative increase following prolonged ethanol administration in rats. Neuropharmacology. 1978b; 17: 463-7.

(140) Sinclair JD, Lindros KO. Acetaldehyde accumulation and voluntary ethanol intake by rats. Alcohol Clin Exp Res. 1979; 3: 276-85.

(141) Spivak K, Amit Z. The role of acetaldehyde-metabolizing enzymes in the mediation of ethanol consumption: An investigation using a simulated drinking bout. Alcohol Alcohol Suppl. 1987; 22: 1. 361-5.

(142) Cederbaum AI, Dicker E. Inhibition of the peroxidatic activity of catalase toward alcohols by the aldehyde dehydrogenase inhibitor cyanamide. Toxicol Lett. 1985; 29: 107-14.

(143) DeMaster EG, Redfern B, Shirota FN, Nagasawa HT. Differential inhibition of rat tissue catalase by cyanamide. Biocheml Pharmacol. 1986; 35: 13. 2081-5.

(144) Aragon CMG, Amit Z. A two dimensional model of alcohol consumption: Possible interaction of brain catalase and aldehyde dehydrogenase. Alcohol. 1985c; 2: 357-60.




DOI: https://doi.org/10.20882/adicciones.478

Enlaces refback

  • No hay ningún enlace refback.